
64 end
65 %%
66
67 % P l o t t hose sim p l e x e l e m e n t s o f the dt which a r e occupied by an o r b i t
68 % i t e r a t e o f z - dt ( l l , : ) a r e t h o se occupied simplex elements
69 patch ( ‘ f ac e s ‘ , dt ( l l , : ) , ‘ v e r t i c e s ‘ , dt . X, ‘ FaceColor ‘ , ‘ r ‘ ) ;
70 N=l eng t h ( l l ) ;
71
72 %%
73
74 %Translateba c k from l l back to phase space p o s i t i o n s z by usi n g the c en te r
75 %p o s i t i o n s with Matlab s u b ro u tin e "mean"
76 zz=ze r o s (N, 2 ) ;
77 f o r i =1:N
78 zz ( i , : ) =mean ( [ dt .X( dt . T r ia n gu l at io n ( l l ( i ) , 1 ) , : )
79 dt .X( dt . T r ia n gu la t io n ( l l ( i ) , 2 ) , : )
80 dt .X( dt . T r ia n gu la t io n ( l l ( i ) , 3 ) , : ) ] ) ;
81 end
82
83 %%Now b ui l d the t r a n s i t i o n matrix A
84 %
85 %So that A( i , j )>0 i f f t h er e i s an element in s i mplex element i such t h a t ←-
t h er e i s an i t e r a t e z ( k , : ) and t h a t
86 % the next i t e r a t e , z ( k +1 , : ) , t r a n s i t i o n s to s i m p l e x element j
87 A=ze r o s (N,N) ;
88 f o r i =1:( le n gt h ( SI ) - 1 )
89 i i = f i n d ( l l==SI ( i ) ) ;
90 j j =f i n d ( l l==SI ( i +1) ) ;
91 %[ i i j j s i z e (A) ]
92 A( i i , j j )=A( i i , j j ) +1;
93 end
94 %Now make A i n t o a s t o c h a s t i c matrix by row n orm a liz i ng
95 f o r i =1:N
96 q=l eng t h ( f i n d ( SI==l l ( i ) ) ) ;
97 A( i , : ) =A( i , : ) . / q ;
98 A( i , : ) =A( i , : ) . / sum(A( i , : ) ) ;
99 end
Question 2:
In Question 2, the task is to investigate the almost invariant sets of the standard map as the
critical parameter, k, is stepped from 0.9 to 1.5. The standard map is given by (2), and is known
to be non-linear (for k 6= 0) and chaotic. The graphs in Figure 2 show similar properties, as com-
pared with the graphs in Figure 3. It should be noted that for a value of k = 0 the standard map
Assignment № 8 Page 8