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HoMEWORK ASSIGNMENT Ne 8

Kevin Mack, Clarkson University 12/14/2017

Question 1:

In the first task of the assignment, there is Matlab code provided from section A3 of the appendix
from Applied and Computational Measurable Dynamics by Erik M. Bollt and Naratip Santitis-
sadeekorn. The code is used to perform several tasks on data sets from chaotic systems.
The tasks include Delaunay Triangulation, and use of the Ulam-Galerkin matrix to estimate the
Frobenius-Perron operator. The methods will be used on a Lorenz attractor given by (1), the
standard map in (2), and finally the Rossler attractor in (5).

The Lorenz attractor is a system of ordinary differential equations which produce chaotic
solutions for certain parameter values of parameters (o, p, and ) and initial conditions,

dx

E_U(y_x)v

dy

27— —2) = 1
o = =2~y (1)
dz

E—xy—ﬁz.

The code to produce the Delaunay triangulation of the Lorenz attractor is given in appendix
A.3 (runnerLorenzCover.m) and is shown in the first code listing.

Listing 1: Matlab code — runnerLorenzCover.m

clear; close all;

load ’LorenzDat.mat’ %This should be n x 3 array of real numbers in this <«
case being points on (near) the lorenz attractor

figure

hold on

grid on

grid minor

plot3 (X(:,1) ,X(:,2),X(:,3),".7)

z=X;

xlow=floor (min(X)); xhigh=ceil (max(X)); h=2.5;
[X1,X2,X3] = ndgrid(xlow (1) :h:xhigh (1), xlow(2):h:xhigh(2), xlow(3):h:+
xhigh (3));

m=size (X1);

xl=reshape (X1,m(1)*m(2)*m(3) ,1); x2=reshape(X2,m(1)*m(2)*m(3),1); x3=¢«
reshape (X3,m(1)*m(2)*m(3) ,1);
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%Formulate Delaunay Triangulation of region
dt= DelaunayTri ([x]l x2, x3]); %See Matlab Subroutine DelauneyTri for <«

input/output information

%dt is the triangulation class

%

%  where

%

%dt.dt. Triangulation is an ml by 4 array of
%integers labelling the vertex corner numbers
%of the triangles

%

% and

%

%dt.X is an m2 by 3 array of real numbers

%defining positions

%Count number of orbit points in z which cause a triangle to be counted as

%occupied (and otherwise a triangle is not counted as it is empty until

%observed occupied

nottrue=0;

while (nottrue <1)

end

Vo

nottrue=1;

SI = pointLocation (dt,z); %Matlab command, Locate the simplex element <«

in dt

%containing the specified locations of each
%of the elements of the array z of orbit

%samples

%

l=unique (SI); %Matlab subrouting: Count the number of unique <«

instances in SI
k=1;

while (isnan (1 (k) )<1l&&k<length (1)) %Using Matlab subroutine True for <«

Not - a- Number

[ii,j]=find (SI=1(k)); %Collect those locations corresponding to <«

each unique 1.
cnt (k)=sum(j);
k=k+1;

end
k=k-1
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% Plot those simplex elements of the dt which are occupied by an orbit
% iterate of z - dt(1ll,:) are those occupied simplex elements

figure;

hold on

grid on

grid minor

plot3(0,0,0); patch(’faces’,dt(11,:), ’vertices’, dt.X, ’'FaceColor’,’r’);
N=length (11);

%Creating and Editing Delaunay Triangulations

The code called runnerLorenzCover.m produces Figure 1, which shows several angles of
the Lorenz attractor as it is covered by a Delaunay triangulation algorithm. The algorithm can
be adjusted based on how much resolution is needed for the cover (by changing the tessellation
size, h).

Further, the Ulam-Galerkin matrix is used to estimate the Frobenius-Perron operator and will
be used to evaluate the standard map. The standard map is an area-preserving chaotic map,
where p,, and 6,, are taken modulo 2,

Pnt1 = Pn + Ksin(6,),
(2)
9n+1 =0n + Pn+1-

The code to produce the standard map is given in the listing below, and can be found in the
appendix A.1.2.

Listing 2: Matlab code — standard.m

function xvecNew = standard (xvec, k)

% Matlab coded in vectorized form of standard

%Input :

% xvec - vector of initial conditions
% k - standard map parameter

%

%Output :

% xvecNew - vector of their images

%

xvecNew = zeros (size(xvec));

xvecNew (1,:) = xvec(1l,:)+xvec(2,:)-k*sin (2*pi*xvec(1l,:))/(2%*pi);
xvecNew (2 ,:) = xvec(2,:)-k*sin(2*pi*xvec(1,:))/(2%pi);

The code to create the stochastic matrix, A, of the standard map is called TransitionMa-
trix.m and is tested by runnerSimpleTriCover.m (appendix A.1.2), which are both given in the
listings below. The runnerSimpleTriCover.m code makes a sample orbit of the standard map,
then calls TransitionMatrix.m to use the Ulam-Galerkin method to approximate the Frobenius-
Perron operator in phase space after being thresholded with second eigenvector, v;. The output

Assignment Ne 8 Page 3



N

0 N O o~ W

30 30

20

10

-10

-20

-30 -30
-20 -15 -10 5 0 5 10 15 20 -20 -15 -10 5 0 5 10 15 20

(a) Angle 1, Lorenz Attractor (b) Angle 1, Lorenz Attractor outer cover h = 2.5

(c) Angle 2, Lorenz Attractor (d) Angle 2, Lorenz Attractor outer cover h = 2.5

Figure 1: The images in the left column show plotted points of the Lorenz attractor for a specific
set of parameters and initial conditions. The images in the right column represent the outer
cover of the attractor which has been achieved through Delaunay triangulation.

from the code can be seen for different values of & in Figures 2 and 3 in the next section.

Listing 3: Matlab code — runnerSimpleTriCover.m

close all; clear;

nPlot = 10000; % nPlot-iterate test orbit this many points after the <«
transient.

M=250; diam=10; a=0; b=1;

h=0.025

%%
YWITTIIMake a Sample Orbit of the Standard Map
k=1.2; %k is chosen >0.97... for the magic breakup of the "golden mean" <«

torus

z=|];
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% Set some variables

transientSteps = 100; %length of initial transient of test orbit to <«
ignore

initialX = rand(2,1);

x = initialX; hold on;

%%
% Throw away transients:
for i=1l:transientSteps
x = standard (x,k); %Use as a test example, the standard map.

end

%%
% Plot the next nPlot points visited:
for i=1:nPlot
x = standard (x,k);
a=lz;x*];
end
z=mod(z,1) ;
plot(z(:,1),z(:,2),b.*, ‘markersize *,10); hold on; %See Fig. 11.1.
%
VAL

TISSTTTTTTTSSI S
9%77Build an Ulam- Galerkin ‘s Matrix Based on a Test Orbit Visiting <«
Triangles
%%%0of a Tesselation
[dt, 1l A, zz]=TransitionMatrix (z,h,a,b,a,b);
triplot (dt) %Matlab routine to draw the triangulation simplex
%See Fig. 11.1.

drawnow ;

%%

[v,d]|=eigs (A*,2); w=abs(v(:,1)); %Compute 1st and send eigenvalues/vectors«
of Galerkin-Ulam Matrix A

%

figure; stem3(zz(:,1),2z(:,2),w(:),‘fill ‘); %Show the dominant eigenvector«

(d(1)=1) meant to roughly estimate invariant density

%
w2=v(:,1); [i,ww]=find (w2>0);
figure; stem3(zz(i,l),zz(i,2),w2(i),‘r*, ‘fill ‘) %See Fig. 11.2.

%% Produce a reversible Markov Chain R
P=A;

[v,d]=eigs (A‘,1);

N=size (A,1);
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for i=1:N
for j=1:N
Phat (i,j)—v(j 1) *P(j. 1) /v(i.1);
end

end
R=(P+Phat) /2;

%%

%Partition

[w,l]=eigs (R,4) ;

figure; plot(w(:,2)) %See Fig. 11.3

c=0; eps=0.005;

[i,ww]=find (w(:,2)>c); [il ,ww]=find (w(:,2)<=c); [iii ,ww]=find (abs(w(:,2) )<
eps);

%% These commands plot the resulting partition in phase space.

% See Fig. 11.4.

figure; patch(‘faces ‘,dt(1l1(i),:), ‘vertices‘, dt.X, ‘FaceColor‘,‘r‘); <«
hold on;

patch (‘faces ‘,dt(11(ii) ,:), ‘vertices ¢, dt.X, ‘FaceColor‘,‘b‘);

patch (‘faces ¢, dt (11 (iii) ,:), ‘vertices ‘, dt.X, ‘FaceColor‘, ‘k¢);

Listing 4: Matlab code — TransitionMatrix.m

TITSSSTTTTTISSSo

%% by Erik Bollt

%7%Build an Ulam- Galerkin ‘s Matrix Based on a Test Orbit Visiting <«
Triangles

%%%0of a Tesselation

TITSSSTTTTIIIS o

% Input:

% z - Test orbit is n x 2 for an n-iterate orbit sample

% h - is the side length of the triangle edges which share a right

% angle

% ax, bx, ay, by - the low and high ends of a box bounding data

% Output:

% dt - a DelaunayTri

%%

function [dt,1l A, zz|=TransitionMatrix(z,h,ax,bx,ay,by)
%%

P%low=-2; high=2; low=0; high=1;

[X1,X2] = ndgrid(ax:h:bx, ay:h:by);

[m,n|=size (X1);
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%Formulate Delaunay Triangulation of region

dt= DelaunayTri ([x]l x2]);

output information

%See Matlab Subroutine DelauneyTri for input/«

%dt is the triangulation class

%

%  where

%

%dt.dt. Triangulation is an ml by 3 array of
%integers labelling the vertex corner numbers
%of the triangles

%

% and

%

%dt.X is an m2 by 2 array of real numbers

%defining positions

%triplot (dt) %Optional plot command of this triangulation

Vo

%Count number of orbit points in z which cause a triangle to be counted as

%occupied (and otherwise a triangle is not counted as it is empty until

%observed occupied

nottrue=0;
while (nottrue <1)

nottrue=1;

SI = pointLocation (dt,z); %Matlab command, Locate the simplex element «

in dt

%containing the specified locations of each
%of the elements of the array z of orbit

Y%samples

%

l=unique (SI); %Matlab subrouting: Count the number of unique <>

instances in SI

k=1;

while (isnan (1(k))<1&&k<length (1)) %Using Matlab subroutine True for <

Not - a- Number

[ii,j]=find (SI==1(k)); %Collect those locations corresponding to <«

each unique 1.

cnt (k)=sum(j);
k=k+1;

end

k=k-1; 11=1(1:k); cnt=reshape(cnt,size(1ll));
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end

VO

% Plot those simplex elements of the dt which are occupied by an orbit

% iterate of z - dt(1ll,:) are those occupied simplex elements
patch (‘faces ‘,dt (11 ,:), ‘vertices ‘, dt.X, ‘FaceColor‘,‘r‘);
N=length (11);

Vo

%Translateback from 11 back to phase space positions z by using the center
%positions with Matlab subroutine "mean"
zz—=zeros (N,2) ;
for i=1:N
zz (1 ,:)=mean ([dt.X(dt. Triangulation (11(i),1) ,:)
dt.X(dt. Triangulation (11(i),2) ,:)
dt.X(dt. Triangulation(11(i),3) ,:)]);

end

%/Now build the transition matrix A
%
%So that A(i,j)>0 iff there is an element in simplex element i such that «
there is an iterate z(k,:) and that
% the next iterate, z(k+1,:), transitions to simplex element ]
A=zeros (N,N);
for i=1:(length(SI)-1)
ii= find (11=SI(i));
ji=find (11=SI(i+1));
%lii jj size(A)]
A(HE L J1)=AGHE L ji) + 15
end
YNow make A into a stochastic matrix by row normalizing
for i=1:N
g=length (find (SI=11(i)));
A(i,:)=A(i,:)./q;
A(i,:)=A(1,:) . /sum(A(i,:));

end

Question 2:

In Question 2, the task is to investigate the almost invariant sets of the standard map as the
critical parameter, k, is stepped from 0.9 to 1.5. The standard map is given by (2), and is known
to be non-linear (for k£ # 0) and chaotic. The graphs in Figure 2 show similar properties, as com-
pared with the graphs in Figure 3. It should be noted that for a value of k£ = 0 the standard map
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is linear, and increases in non-linearity as k is increased. The graphs were created with code
from Question 1 (standard.m, runnerSimpleTriCover.m, and TransitionMatrix.m). Accord-
ing to the reference material A Glance at the Standard Map by Ryan Tobin, as the non-linearity
factor, k, is increased, the nonintegrable components of the standard map become more ap-
parent. Also, the final invariant torus is terminated when the irrationality of the winding number
corresponding to the last quasiperiodic orbit is farthest from rational, which occurs at the golden
mean (approximately 1.61). This occurs at &k > 0.97 and can be seen by comparing the graphs
in the left column of Figures 2 and 3, which include the standard map from k£ = 0.9 to k£ = 1.5.
In summary, for each different value of &, the codes work together to produce an Ulam-Galerkin
estimate of the Frobenius-Perron operator. The major steps of the code are as follows:

Step 1: Create a test orbit of the standard map (standard.m and runnerSimpleTriCover.m)

Step 2: Perform a Delaunay triangulation in the specified domain for the test orbit for a set k-value
(runnerSimpleTriCover.m and built-in function DelaunayTri.m)

Step 3: Prune the initial triangulation to a smaller collection of triangles which include only those
triangles which have been visited by the test orbit. (TransitionMatrix.m)

Step 4: Form stochastic matrix, A (which is an M x M matrix where M is the smaller number of
triangles), by using the Ulam-Galerkin estimate of the Frobenius-Perron operator. Transi-
tionMatrix.m)

The Frobenius-Perron operator can be defined as an infinitely large stochastic matrix acting
on an infinite-dimensional linear space, however this representation is not particularly useful in
practice. Instead, a finite-rank approximation of the operator is obtained through the process
described above. The matrix approximation we are after is given by,

B;N F~Y(By))
m(B;) 7
where m denotes the Lebesgue measure on M. However, since we are working with a test

py ="t @)

orbit (4) then becomes,

#({zr|zr € B; and F(x) € B;})
#({zx € Bi}) ’

Pz’,j ~
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(a) A Delaunay triangulation for the test
orbit, k = 0.9

(d) A Delaunay triangulation for the test
orbit, k = 1.0

(9) A Delaunay triangulation for the test
orbit, k = 1.1
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(c) The thresholded weakly invariant sets
of the test orbit for k = 0.9
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(f) The thresholded weakly invariant sets
of the test orbit for k = 1.0
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(i) The thresholded weakly invariant sets
of the test orbit for k = 1.1

Figure 2: The images in the left column represent the Delaunay triangulation of the standard

map. The blue dots represent the test orbit, while the red triangles are the grid elements visited

by the test orbit. The images in the middle column are the second eigenvector, vq, of the re-

versible Markov chain. Lastly, the images in the right column are the almost invariant sets of the

standard map test orbit on the pruned tessellation (shown in the left column). The eigenvector

v can be thresholded to produce the tessellation elements corresponding to weakly transitive

comnponents (red and blue), with the triangles on the boundary (black).
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(d) A Delaunay triangulation for the test (e) The eigenvector v for k = 1.4 (f) The thresholded weakly invariant sets
orbit, k = 1.4 of the test orbit for k = 1.4
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Figure 3: The images here represent the same concepts as in Figure 2, but for values of £ =
{1.2,1.4,1.5}. It can be seen here in the middle column of images of eigenvector v, that the
higher the value of k, the more the oscillation is present between sets (or sets). It can also
be seen that the higher k-values produce more chaotic behaviour, as is expected. (Note that
graphs for k = 1.3 have been omitted simply to save space, since their behaviour is similar to
the other graphs present)

Assignment Ne 8 Page 11



Question 3:

In this section the task is to apply the same methods in Part 1 to the Rossler Attractor (instead
of the Lorenz attractor). The Matlab code will attempt to create an outer cover of the chaotic
attractor. The Rossler Equations are given in (5), with parameters a = 0.2, b = 0.2, and ¢ = 8.0.

@y

at — Y

d

d—g;:m—kay (5)
d

d—i:b—i-z(a;—c)

The Rossler attractor is modeled by the code rossler.m, which makes use of Matlab‘s
ode45 to solve a set of ordinary differential equations. The data from rossler.m is then used
by runnerRosslerCover.m to create a cover of the attractor (similar to runnerLorenzCover.m
in Question 1). The results, using the same Delaunay Triangulation parameters as in Question
1, are given by Figure 4.

Rossler Attractor Rossler Attractor Rossler Attractor

15
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50 o

40 o

304

20 +

104

0-7
-15 -10 5 0 5 10 15 20 20 20 -20 .15 10 5 0

(a) Angle 1, Rossler Attractor (b) Angle 2, Rossler Attractor

Rossler Attractor (Outer Cover) Rossler Attractor (Outer Cover)

-10 15 -

10 4
-15

-20
-15 -10 5 0 5 10 15 20 -20 -20 -15 -10 5 o

s

10

Rossler Attractor (Outer Cover)

15

(c) Angle 3, Rossler Attractor

20

0

5
0 \'ﬁ\v‘y—j“/'m
0

1020

-20

(d) Angle 1, Rossler Attractor outer cover  (e) Angle 2, Rossler Attractor outer cover  (f) Angle 3, Rossler Attractor outer cover

h=25 h =25 h =25

Figure 4: The figure depicts the accuracy of computing the outer cover of the Rossler attractor
using Delaunay triangulation and basic grid element size h = 2.5. It is clear from the graphs
that the grid elements are too large to give a proper representation of the outer cover, causing
the figures on the bottom row to appear to be a very low representation of the attractor. This
can be fixed by adjusting the h parameter, and the results of doing so are represented in Figure
5.
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Listing 5: Matlab code — rossler.m

%% Create Data for Rossler Equations

clear;

a=0.2; b=0.2; ¢c = 8.0; % set parameters for Rossler attractor
t = 0:.0001:100; % set time step and interval

X _init = 1; y_init = 1; z_init = 1; % set initial conditions

% Rossler ODE
f =@Q(t,x) [ -x(2)-x(3); x(1)+a*x(2); b+x(1)*x(3)-c*x(3)];

[t1,x1] = oded5(f, t, [x_init y _ init z_ init]);

% plot results

figure

hold on

grid on

grid minor

title (‘Rossler Equations ‘)
plot3(x1(:,1), x1(:,2), x1(:,3), ‘k-¢)

% Save Rossler equations data

X = x1;

X data = X*;

filename = ‘rossler .mat ‘;

save (filename , ‘X‘, ‘X data‘);

It can be seen that in the Figure 4, the tessellation size is not low enough to give a very

descriptive cover for this particular attractor. This can be fixed by adjusting the size of the

elements (decreasing the tessellation size). The results from this adjustment can be seen in

Figure 5. The desired accuracy can be achieved through this adjustment ( tessellation size h),
1\ d
with the caveat that the size of the sparse matrix, A, scales in size according to <E) for domain

dimension d (meaning more computation time and resources).
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(c) Angle 2, Rossler Attractor outer cover h = 1.5
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(e) Angle 3, Rossler Attractor outer cover h = 1.5
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(b) Angle 1, Rossler Attractor outer cover h = 0.5
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(d) Angle 2, Rossler Attractor outer cover h = 0.5
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(f) Angle 3, Rossler Attractor outer cover h = 0.5

Figure 5: Results of varying the parameter i in the cover computation. The outer cover of the

Rossler attractor becomes more clear as h is decreased, however this requires more compu-

tation resources. The h parameter corresponds to the tessellation size. The solution with the

best accuracy (of the tested h values) is when h = 0.5. This attractor required more resolution

to achieve results that are visibly satisfying than the Lorenz attractor from Question 1.
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