
EE 520 HW3 Question 2

Kevin Mack, Clarkson University 10/04/2017

Problem Statement

In this problem we are attempting to represent samples of different types of music onto a basis
set in order to perform classification. It is our task to choose an appropriate basis that will
separate the different types of music in space, and to then use linear discriminant analysis
(LDA) in order to perform the classification step.

The Data

It is first necessary to read in the music data and get it into a form where we can apply our
mathematical techniques. Each data set will consist of short samples of different songs from
the same music type. In this work, we select music made from the didgeridoo and classic
country music. These choices are made based on the fact that to our own ears, the classification
between the two types is easily made; this makes it a good place to start for implementing a
classification algorithm in code. The following MATLAB code will read in samples from each
data set, using a sample length of N = 500000 (which corresponds to roughly 10 seconds).
Each song will form a data vector di, where i is the number of different songs in the sample.
From each data vector a data matrix D will be formed, where each column corresponds to a
different song of that category. The data matrix for country music will henceforth be referred to
as Dc, and the didgeridoo music Dd.

Listing 1: Matlab code – Gather data and define matrices.
1
2 didgeridoo_files = dir(‘*.wav‘);
3 dsounds = length(didgeridoo_files);
4 test_sounds = 3;
5 fs_d = zeros(1, dsounds);
6 for i = 1:dsounds
7 currentfilename = didgeridoo_files(i).name;
8 [currentsound, fs_d(i)] = audioread(currentfilename);
9 didgeridoo_cells{i} = currentsound;

10 end
11
12 country_files = dir(‘*.WAV‘);
13 csounds = length(country_files);
14 fs_c = zeros(1, csounds);
15 for i = 1:csounds

Assignment № 3 Page 1

16 currentfilename = country_files(i).name;
17 [currentsound, fs_c(i)] = audioread(currentfilename);
18 country_cells{i} = currentsound;
19 end
20
21 % get all sounds into column matrix
22 column_length = 500000;%number of samples per son
23
24 % form matrix of didgeridoo music
25 d_matrix = zeros(column_length, dsounds);
26 for i = 1:dsounds
27 s = cell2mat(didgeridoo_cells(i));
28 s = s(1:column_length,1);
29 d_matrix(:, i) = s‘;
30 end
31
32 % form matrix of country music
33 c_matrix = zeros(column_length, csounds);
34 for i = 1:csounds
35 s = cell2mat(country_cells(i));
36 s = s(1:column_length,1);
37 c_matrix(:, i) = s‘;
38 end

Picking an Appropriate Basis

It is important to choose a basis that will separate the different types of music in space. In im-
age recognition wavelets are a popular choice for a basis- this is because they are an excellent
edge detection method, which is important for recognizing shapes in images. However, in this
example wavelets are unlikely to provide a proper basis, as edge detection is not necessar-
ily important in detecting different types of music. It makes intuitive sense that a basis which
can detect frequency patterns would be of great use, since music is simply a combination of
sinusoids of different frequencies and amplitudes. This leaves us with a few different options,
namely the Fourier, Discrete Cosine, and Discrete Sine transforms. In order to simplify the
problem (hopefully without losing any accuracy) the Discrete Cosine Transform (DCT) is used
to extract the frequency content of the signal. The Fourier Transform, though appropriate in this
scenario, would require processing of real and imaginary values which we avoid for the sake of
simplicity. There are several forms for the discrete cosine transform (DCT). To check to see if
the frequency content between the two classes can be exploited, we can create spectrograms
of samples from each class. In Figure 1, it can be observed that the didgeridoo music and
country music have different frequency content. This is a good indication that using the DCT is
appropriate for this case. In MATLAB, the implementation of the DCT command is known as
the DCT-II, which is the most commonly used form. The equation for the transform is given by

Assignment № 3 Page 2

Figure 1: Spectrograms of one sample of music from each class. The figure on top is a sample
of didgeridoo music, and the figure on the bottom is a sample of country music. It can be
observed that the country music sample has a much wider range of frequency content, while
the didgeridoo music is mostly concentrated in the low frequencies. This is an indication that
using a Discrete Cosine basis will aid in classification between these two types of music.

Eq.(1):

Xk =
N−1∑
n=0

xkcos

[
π

N

(
n+

1

2

)
k

]
k = 0, ..., N − 1 (1)

The DCT is essentially the same as the real component as the Fourier Transform, which
is why it was selected for this scenario. The following MATLAB code shows how the DCT is
performed on the data matrices Dc and Dd.

Listing 2: Matlab code – Extract frequency content of music samples
1 % take dct of each signal (use Fourier Basis)
2 d_matrix_dct = zeros(column_length, dsounds);
3 for i = 1:dsounds
4 d_matrix_dct(:,i) = dct(d_matrix(:,i));
5 end
6
7 c_matrix_dct = zeros(column_length, csounds);
8 for i = 1:csounds
9 c_matrix_dct(:,i) = dct(c_matrix(:,i));

10 end

Training the Sound Data

After choosing the basis set, it is then time to train the data for classification. In this work the
method for training will consist of Linear Discriminant Analysis (LDA). The basis set, if chosen

Assignment № 3 Page 3

correctly, will cause the two classes of data to separate by their mean. Once the data is sep-
arated, the LDA step will be an attempt to find a suitable projection to maximize the distance
between the inter-class data while minimizing the distance between the intra-class data. For-
mally, this two class projection can be written as maximization problem given by Eq.(2).

w = argmax
w

wTSBw

wTSWw
(2)

where w is the projection, SB and SW are the scatter matrices for between-class and within
class, respectively. They are given by

SB = (µ2 − µ1)(µ2 − µ1)T (3)

SW =
2∑

j=1

∑
x

(x− µj)(x− µj)T (4)

The criterion given by Eq.(2) is commonly known as the generalized Rayleigh quotient, and
whose solution is known to be solved by a generalized eigenvalue problem,

SBw = λSww (5)

where λ and its associated eigenvector give the quantity of interest and the projection ba-
sis. This analysis is implemented following the SVD decomposition. The following code is the
sound_trainer.m file which performed these steps.

Listing 3: Matlab code – Train audio samples
1 function [result, w, U,S,V,th] = sounds_trainer(sounds1, sounds2, ←↩

feature)
2 %Function that receives audio data matrices and uses the SVD to project ←↩

the
3 % data into a space where it can be easily classified by a linear
4 % discriminant
5 n1 = length(sounds1(1,:)); n2 = length(sounds2(1,:));
6
7 [U,S,V] = svd([sounds1, sounds2], 0); %reduced SVD
8 sounds = S*V‘;
9 U = U(:,1:feature);

10
11 sounds1 = sounds(1:feature, 1:n1);
12 sounds2 = sounds(1:feature, n1+1:n1+n2);
13
14 figure
15 subplot(2,1,1)
16 plot(diag(S), ’ko’,’Linewidth’,[2])
17 set(gca, ’Fontsize’,[14],’Xlim’,[0 80])
18 subplot(2,1,2)
19 semilogy(diag(S),’ko’,’Linewidth’,[2])

Assignment № 3 Page 4

20 set(gca,’Fontsize’,[14],’Xlim’,[0 80])
21
22 [vrow, vcol] = size(V);
23 figure
24 basis = 5;
25 for j=1:basis
26 subplot(basis,2,2*j-1)
27 plot(1:(vcol/2), abs(V(1:(vcol/2),j)),’ko-’)
28 subplot(basis,2,2*j)
29 plot((vcol/2+1):vcol,abs(V((vcol/2+1):vcol,j)),’ko-’)
30 end
31
32 m1 = mean(sounds1, 2);
33 m2 = mean(sounds2, 2);
34
35 Sw =0;
36 for i = 1:n1
37 Sw = Sw+(sounds1(:,i)-m1)*(sounds1(:,i)-m1)‘;
38 end
39 for i = 1:n2
40 Sw = Sw+(sounds2(:,i)-m1)*(sounds2(:,i)-m2)‘;
41 end
42
43 Sb = (m1-m2)*(m1-m2)‘;
44
45 [V2, D] = eig(Sb, Sw);
46 [lambda,ind] = max(abs(diag(D)));
47 w = V2(:,ind); w = w/norm(w,2);
48
49 vsounds1 = w‘*sounds1; vsounds2 = w‘*sounds2;
50
51 result = [vsounds1, vsounds2];
52
53 if mean(vsounds1) > mean(vsounds2)
54 w = -w;
55 vsounds1 = -vsounds1;
56 vsounds2 = -vsounds2;
57 end
58
59 sortsounds1 = sort(vsounds1);
60 sortsounds2 = sort(vsounds2);
61
62 t1 = length(sortsounds1);
63 t2 = 1;
64
65 while sortsounds1(t1)>sortsounds2(t2)
66 t1 = t1-1;

Assignment № 3 Page 5

67 t2 = t2+1;
68 end
69
70 th = sortsounds1(t1)+sortsounds2(t2)/2;
71 bins = 20;
72 figure
73 subplot(1,2,1)
74 histogram(sortsounds1, bins); hold on, plot([th th], [0,10],’r’)
75 title(’Sounds 1’)
76 subplot(1,2,2)
77 histogram(sortsounds2, bins); hold on, plot([th th], [0,10],’r’)
78 title(’Sounds 2’)

The function receives as input two data matrices and an integer value for the number of
features to be included in the classification scheme. The datamatrices are the frequency content
(DCT transformed) from the audio data.

Results

The results of training the data are represented by a graph that is output in the sound_trainer.m
function. Once the LDA solution is found, a histogram of the results can be plotted which details
how well the classification scheme worked. There are two histograms which represent the data
from each individual class. Also, the discriminant line is plotted on each graph to give an indica-
tion of how well the two classes were separated. In this case it appears the basis set was a valid
choice. The intra-class samples are clustered very tightly together, but the inter-class samples
are clustered sufficiently far from each other. This means that a simple linear discriminant will
be effective in classifying these two types of music. The results pictured in Figure 2 are the
results from using 10 features for classification and 500000 samples per song.

The results are dependent on two main factors. The first, being the number of samples taken
from each song. Since audio samples are taken at high frequency (44kHz) it is important to
balance having too many samples for computational efficiency, and too little samples resulting
in a insufficient temporal duration. It is important to allow the song a sufficient amount of time
to produce its frequency characteristics in order to be able to classify between different types of
music.

The second important factor is the number of features used for classification. As can be seen
in Figure 2 the principal orthogonal modes extracted from the SVD have varying degrees of
energy associated with their principal vectors. The number of principal vectors, which we take
as our basis vectors, play a key role in helping to classify the audio samples.

Assignment № 3 Page 6

Figure 2: In the histogram on the left, the results from training are displayed for N = 500000

and F = 10. The DCT basis, along with LDA, has done a sufficient job of clustering the intra-
class samples closely together, while separating the inter-class samples. The discriminant line
is also displayed, with no samples crossing over for misclassification. The singular values from
the SVD are displayed in the right graph, with the log-scale being on the bottom. Due to the
complexity of the data, it can be seen that up until roughly the twentieth value, there isn’t a large
drop off in energy between the different modes.

Finally, It is important to take into account the available computing power and the target com-
putation time in order to balance the accuracy of the algorithm vs. its computational expense.
Alternatively, it may be possible to implement a sparse resampling scheme into the algorithm.
This would allow the song to progress in time, while keeping the number of samples to a desired
(lower) value.

Assignment № 3 Page 7

Assignment № 3 Page 8

