
51 %% do tr u e p o s i t i v e s now
52 tp = z e r o s ( s i z e ( rho , 2 ) , t r i a l s ) ;
53 T_tp = z e r o s ( s i z e ( rho , 2 ) , t r i a l s ) ;
54 f o r i = 1 : s i z e ( rho , 2)
55 N = mvnrnd (S ‘ , C_M, t r i a l s ) ;
56
57 % f i n d d e c o r r e l a t e d matrix
58 [U, D, W] = e i g (C_N) ;
59
60 % d e c o r r e l a t e
61 M = U*N( 1 : end , : ) ‘ ;
62 R = U*S ;
63
64 % r e s t a t e problem without cr o ss - terms ( d e c o r r e l a t e d n o i s e v a r i an ce )
65 % t h i s ca s e has the s i g n a l pl u s n o i s e
66 X = S + N ‘ ;
67 Y = R + M;
68
69 f o r j = 1 : t r i a l s
70 T_tp( i , j ) = 1 . /R‘ *C_M_i*Y( : , j ) ;
71 i f T_tp( i , j ) > rho ( i )
72 tp ( i , j ) = 1 ;
73 end
74 end
75 end
76
77 % c a l c u l a t e t r ue and f a l s e p o s i t i v e r a t e s
78 fp_rat e = f p * ones ( t r i a l s , 1) . / t r i a l s ;
79 tp_rate = tp * one s ( t r i a l s , 1) . / t r i a l s ;
80
81 m a rk e r si z e = 8 ;
82 f i g u r e
83 hold a l l
84 g r i d on
85 g r i d minor
86 p l o t ( fp_rate , tp_rate )
87 p l o t ( 0 . 1 , 0 .4 25 , ’ r * ’ , ’ m ar k e rs i z e ’ , markersiz e , ’ MarkerFaceColor ’ , ’ r ’ )
88 p l o t ( 0 . 1 9 2 7 , 0 . 59 0 8 , ’ go ’ , ’ ma r k er s ize ’ , m a r k e r size , ’ MarkerFaceColor ’ , ’ g←-
’ )
89 x l a b e l ( ’ F als e P o s i t i v e Rate ’ )
90 y l a b e l ( ’ True Po s i t i v e Rate ’ )
91 t i t l e ( ’ROC Curve ’ )
92 le g e n d ( ’ROC Curve ’ , ’P_{ f a } = 0 .1 ’ , ’ Bayesian De t e c t o r ’ )
Homework 3 Page 3